
Hadoop:
Apache’s Open Source

Implementation of Google’s
MapReduce Framework

Joey Calca & Ryan Anguiano
http://hackedexistence.com

http://hackedexistence.com
http://hackedexistence.com

• Cloud Overview

• Mapper / Reducer Walkthrough

• Hadoop Backend Infrastructure

• Streaming Interface

• HDFS / Hbase

• Netflix Prize / Sample Code

• A Few Other Projects ...

2

Cloud Computing

• Clouds are big piles of other people’s
machines, plus virtualization

• Scalable

• Virtual

• High Level API

• Course Grain data processed in parallel

Courtesy Stanzione, Sannier, and Santanam, Arizona State University

3

How much data?

• Wayback Machine has 2 PB + 20 TB/month (2006)

• Google processes 20 PB a day (2008)

• “all words ever spoken by human being” ~ 5 EB

• NOAA has ~ 1PB climate data (2007)

• CERN’s LHC will generate 15 PB a year (2008)

Stats from The iSchool University of Maryland

4

Saguaro Cluster

Research Group High Performance Computing Initiative

Department Fulton School

Primary Application Various

of Processor Cores 4560

Processor Architechture Intel Xeon

Interconnect InfiniBand

Memory 10240 GB (Total)

Storage 215 TB

OS CentOS 5.3

Sys Admin Contact Douglas Fuller

5

Google’s Map/Reduce

•Google 2004 at The Sixth Symposium on
Operating System Design and Implementation

•Processing and Generating large data sets

•Many real world tasks are expressible in this
model

•Automatically parallelized for a large cluster of
commodity machines

6

Google’s Map/Reduce

•Input -> Mapper -> Intermediate <key/value>
Pairs -> Reducer -> Output

•Easy to utilize resources of large distributed
system without any experience

•Highly scalable: typically processes many
terabytes of data in parallel

•Upwards of 1,000 MapReduce jobs are
executed on Googles clusters daily

7

• Apache Project’s Open Source
Implementation of MapReduce

• JAVA Based

• Hadoop has been demonstrated on
clusters with 2000 nodes. The current
design target is 10,000 node clusters.

• http://hadoop.apache.org

8

http://hadoop.apache.org
http://hadoop.apache.org

Mapper
• Map is a special function that applies the

function f to each element in the list

• Map[f,(1,2,3,4,5)] -> {f[1],f[2],f[3],f[4],f[5]}

1 2 3 4 5

sq

1 2 3 4 5

sqsqsqsq

1

sq

4 9 16 25

sqsqsqsq

9

Mapper

• Input:

• Maps all the input
values to a key

• map() is called once
for each line of input

• Output:

• Collects <key, value>
pairs

• Passes to reducer as
hashmap

10

Copy/Sort

• After Map() before Reduce()

• Hashmap outputs are copied from all
mapper nodes to the reducer node

• Sorted by Key

• Values are passed to the reducer as an
array for each key

11

Reducer

• Reduce[f,x,list]

• Sets an accumulator

• Initial value is x

• Applies f to each element of the list plus the
accumulator

• Result is the final value of the accumulator

• Reduce[f,x,{a,b,c}] => f[f[f[x,a],b],c]

12

Reducer

13

Reducer
• Input

• The output <KV>
hashmap from
Copy/Sort

• f(x) is performed on
every x with a
common key

• Output

• A <KV> hashmap of
the output of reduce()

14

Map/Reduce
Framework

• Map is implicitly parallel

• Order of application of function does not matter

• Reduce is executed in serial on a single node

• Programmer does not have to handle:

Work distribution, Scheduling, Networking,
Synchronization, Fault recovery (if a map or reduce
node fails), Moving data between nodes

15

Map/Reduce
Framework

Data Store

Initial kv pairsInitial kv pairs Initial kv pairs Initial kv pairs

mapmap map map

k1, values…
k values

k1, values…
k values

k1, values…
k values

k1, values…
k values

k2, values…
k3, values…

k2, values…
k3, values…

k2, values…
k3, values…

k2, values…
k3, values…

Barrier: aggregate values by keys

reduce

k1, values…

reduce

k2, values…

reduce

k3, values…

reduce

final k1 values

reduce

final k2 values

reduce

final k3 values

16

Master Node

• Assigns tasks and data to each node

• Hosts an http JobTracker on port 50030

• Queries each node

• Kills any task that does not respond

• Re-Batches killed tasks out to next available
node

17

Job Tracker

18

Distributed Cache

• A Network File Share

• Store Large Read-Only files in DC

• Mappers and Reducers receive a pointer to
files stored in DC

• Create a local Hashmap from DC files in
the configure() method

19

Streaming

• Interface that uses stdin and stdout to
stream input and output to each node

• Gives the ability to port mappers and
reducers to any language that is
executable on each node

• Input is read from stdin()

• input = readInput(sys.stdin)

20

Streaming

• Output is a hashmap, which is a
string in the form:

<Key (tab) Value>

• Output is written to stdout()

• print “%s\t%s” % (key, value)

21

Streaming

• The utility packages all executables
into a single JAR

• JAR is sent to all nodes

• Distributed Cache files are
symlinked to the current working
directory

22

Streaming

23

Reporting in Streaming

• Stdin/Stdout used for data, Stderr used for
communication to Master Node

• Counter must be reported after every output line
to track job progress

 report:counter:pyNetflix1,mapper,1

• Status messages can be used to track errors in log
files

 report:status:Movie not found

24

• Hadoop Distributed File System (HDFS) -
Google uses GoogleFileSystem (GFS)

• High fault-tolerant, low cost hardware

• High throughput, streaming access to data

• Data is split on 64 meg blocks and
replicated in storage

HDFS

25

• HBase is equivalent to Google’s BigTable

• NON-RELATIONAL DATABASE

• Is not built for real-time querying

• Moving away from per-user actions

• Towards per-action data sets

26

• Distributed

• Multi-dimensional

• De-Normalized Data

• HBase is not an SQL Database

27

• Table Schema defines Column Families

• Column Family contains multiple Columns

• Each Column has Versions (Z-axis)

• Everything except table name stored as
byte[]

28

Amazon's Elastic
Compute Cloud (EC2)

• Web service that provides resizable compute
capacity in Amazon’s Cloud.

• Hadoop is packaged as a public EC2 image (an
AMI) so it is easy for us to get up and running with
a cluster.

• Extremely simple to setup an elastic hadoop cloud

• http://aws.amazon.com/ec2/

29

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

Amazon's Pricing
EC2

S3 (Amazon’s Simple Storage Service)

30

 2 GB dataset of movie/user/ratings
 Training_set1.txt...Training_set17770.txt:

• MovieIDs range from 1 to 17770 sequentially.

• CustomerIDs range from 1 to 2649429, with gaps. There
are 480189 users.

• Ratings are on a five star scale from 1 to 5.

• Dates have the format YYYY-MM-DD.

1: [Movie 1 of 17770]
1116, 3, 2006-04-17 [CustomerID,Rating,Date]
2, 5, 2007-07-07

31

• Default input dataset creates one mapper per file

• Inefficient when dealing with 17,770 files

• Need to optimize # of files to the number of
mappers available

• Awk script used to reorganize input dataset into
104 files to be used on 100 procs

• Insures that all mappers are being utilized while
optimizing file I/O

32

netflixReorg.awk:

 # tokenize on “:”
BEGIN { FS = ":" }

 # if it is the first line, movieID = first token
{if(FNR == 1) movieID = $1

if it is not the first line,
output movieID “,” first token

if (FNR != 1) print movieID "," $1}

33

• Efficiency gained by reorganizing input dataset

• Netflix1 -
43:27

• Netflix1Reorg - 9:55

• pyNetflix1 - 13:02

• awkNetflix1 - 9:04

34

Netflix1 Program

• Produce statistical information about each
movie in the dataset

• It took the reorganized Netflix dataset as
input

• Produced the first date rated, last date
rated, total rating count and average rating
for each movie as the output

35

Netflix1 Mapper

• Input: Netflix Prize Reorganized Training Set

• output: <movieID, rating : dateRated>

• one <K,V> pair for each movieID in the
input data set

36

Netflix1 Mapper Code

• Netflix1/MyMapper.java

37

pyNetflix1 Mapper Code

• pyNetflix1/pyMapper.py

38

awkNetflix1 Mapper Code

• awkNetflix1/awkMapper.awk

39

Mapper Comparison

Netflix1 Java Python* Awk*

Map Task Best: 8 sec
Avg: 12 sec

Best: 27 sec
Avg: 1 min 5 sec

Best: 9 sec
Avg: 15 sec

40

*Python and Awk incur the overhead of streaming

Netflix2 Reducer
• The Netflix2 program calculates statistics

based on the users in the dataset

• Netflix2 Mapper output:
<userID, movieID : rating : dateRated>

• One <K, V> per unique userId/movieId/rating

• Netflix2 Reducer output:
<userID, ratingCount : avgRating :
ratingDelay : movieRatingDateList >

41

Netflix2 Reducer Code

• Netflix2/MyReducer.java

42

pyNetflix2 Reducer Code

• pyNetflix2/pyReducer.py

43

Reducer Comparison

Netflix 2 Java Python*

Reduce Task 2 min 58 sec 8 min 45 sec

44

*Python incurs the overhead of streaming

Image Processing

• Hadoop works best with text datasets

• Splits data on \n, not good for binary

• Jeff Conner & Douglas Fuller extended the
FileInputFormat interface to deal with
images

45

46

Canny Edge DetectionInput Image Sobel Edge Detection

Canny Edge DetectionInput Image Blob Detection

47

FB Dataset

• 405 Users Complete Walls

• Part of a College Network

• Ranges from 11/1/2004 - 3/30/2009

• 227,228 Unique Posts

• 76,258 Status Updates

48

49

Posts per day

Total Posts

Status Updates

Total Posts Trend Line

50

Posts per day

51

FB Wordcount

52

is 24749 lol 1946

i 19365 no 1675

happy 15532 gave 1622

hey 15437 how 1473

has 6497 was 1461

haha 5104 thank 1406

you 4620 yes 1377

thanks 3956 it 1369

oh 3782 yo 1266

so 3397 hahaha 1265

yeah 2801 the 1226

i'm 2609 dude 1219

what 2318 we 1153

just 2266 my 1132

well 2188 added 1011

im 2073 that 1001

hi 2021

Shoutouts

• Dr. Adrian Sannier - University Technology
Officer

• Dr. Dan Stanzione Jr. - Director of High
Performance Computing Initiative

• Dr. Raghu Santanam - Associate Professor

• Nathan Kerr, Jeff Conner & Douglas Fuller

53

Thank you

Joey Calca
r3dfish@

hackedexistence.com

Ryan Anguiano
bl4ckbird@

hackedexistence.com

http://hackedexistence.com

54

mailto:r3dfish@gmail.com
mailto:r3dfish@gmail.com
mailto:r3dfish@gmail.com
mailto:r3dfish@gmail.com
http://hackedexistence.com
http://hackedexistence.com

